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Abstract. We study the large-distance behavior of the bulk order-parameter correlation function G(r) for
T > Tc within the lattice version of the ϕ4 theory including lattice effects. We also study the large-L
behavior of the susceptibility χ for T > Tc of the confined lattice system of linear size L with periodic
boundary conditions. We find that the structure of the large-L behavior of χ of the confined system is
closely related to the structure of the large-distance behavior of G(r) of the bulk system. Explicit results are
derived in the spherical (large-n) limit and in one-loop order for general dimensions d > 2. For the lattice
model with cubic symmetry we find that finite-size scaling must be formulated in terms of the anisotropic
bulk correlation length (exponential correlation length) that governs the exponential decay of G(r) for large
r rather than in terms of the ordinary isotropic bulk correlation length ξ defined via the second moment of
G(r). We show that it is the exponential bulk correlation length ξ1 in the direction of the cubic axes that
determines the exponential finite-size scaling behavior of lattice systems in a rectangular geometry. This
result modifies a recent interpretation concerning an apparent violation of finite-size scaling in terms of
the second-moment correlation length ξ 6= ξ1. Exact results for the one-dimensional Ising model illustrate
our conclusions. Furthermore we show for general d > 2 that a description of finite-size effects for finite n
in the entire region 0 ≤ L/ξ ≤ ∞ requires two different perturbative approaches that are applicable either
to the region 0 ≤ L/ξ . O(1) or O(1) . L/ξ ≤ ∞, respectively. In particular we show that the exponential
finite-size behavior for L/ξ � 1 above Tc is not captured by the standard perturbation approach that
separates the homogeneous lowest mode from the inhomogeneous higher modes. Consequences for the
theory of finite-size effects above four dimensions are discussed. We show that the two-variable finite-size
scaling form predicts an exponential approach ∝ e−L/ξ1 to the bulk critical behavior above Tc whereas the
reduction to a single-variable scaling form implies a power-law approach ∝ L−d.

PACS. 05.70.Jk Critical point phenomena – 64.60.-i General studies of phase transitions

1 Introduction

The fundamental length scale near a critical point is the
bulk correlation length ξ which is a measure of the range
of correlations of the order-parameter fluctuations. In this
paper we consider lattice systems with cubic symmetry at
and above Tc. We assume short-range interactions. The
bulk order-parameter correlation function G(r) between
two lattice points at relative separation r serves to define
ξ via the second moment of G(bfr) according to

ξ2 =
∑

r

r2G(r)/
∑

r

G(r). (1.1)

In terms of the Fourier transform Ĝ(k) this definition
reads

ξ2 = Ĝ(0)
∂

∂k2
[Ĝ(k)]−1

∣∣∣
k=0

. (1.2)
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This is applicable to lattice systems with cubic sym-
metry whose correlation function Ĝ(k) has an isotropic
small k behavior at O(k2). The “second moment cor-
relation length” (1.2) is widely used in field-theoretic
calculations [1–3] since ξ is identical with the inverse
mass m−1 = ξ that enters the two-point vertex function
Γ (2)(k) = Ĝ(k)−1.

The bulk correlation length (1.2) plays a fundamen-
tal role also in the formulation of the finite-size scaling
behavior of confined systems. Consider, for example, the
susceptibility χ(t, L) ∝ Ĝ(0) of a ferromagnetic system
for t = (T − Tc)/Tc > 0 in a finite geometry with a char-
acteristic size L and with periodic boundary conditions.
It is believed that the relative deviation from bulk critical
behavior χ(t,∞) = Aχt

−γ has the asymptotic (large L,
small t) scaling form [4–8] below four dimensions

∆χ =
χ(t,∞)− χ(t, L)

χ(t,∞)
= g(L/ξ) (1.3)
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where g(x) is a universal function in the entire range 0 ≤
x ≤ ∞. This means that any dependence of ∆χ on the
lattice constant ã is negligible in the asymptotic region
ξ � ã, L � ã for arbitrary ratios L/ξ, including the
large-L behavior at fixed ξ � ã [4,9]. In a recent paper
we have shown [10] that this statement is not valid in the
regime L/ξ � 1. Specifically, for cubic geometry of size
L� ξ � ã, we have found

∆χ = g(L/ξ) exp
{
Γ (ã/ξ)

L

ξ

}
. (1.4)

Here g(x) is indeed universal but the ã dependent expo-
nential factor with the nonuniversal function

Γ (ã/ξ) =
1
24

(ã/ξ)2 +O
[
(ã/ξ)3

]
(1.5)

is non-negligible for L & 24 ξ3/ã2, i.e., for sufficiently
large L close to the bulk limit above Tc, even in the asymp-
totic region ξ � ã. Thus the finite-size scaling form (1.3)
in terms of the second-moment correlation length (1.2) is
not valid for lattice systems, even below four dimensions.
This conclusion is based on one-loop results as well as on
exact results in the spherical limit of the ϕ4 lattice model
at finite lattice spacing [10]. We note that the possibil-
ity of a non-negligible dependence of finite-size effects on
the lattice spacing ã, even for d < 4, was already men-
tioned by Privman and Fisher [11]. An as yet unexplained
ã-dependence that is not consistent with a finite-size scal-
ing ansatz of the kind (1.3) was also found by Gelfand
and Fisher [12] in the interfacial free energy of the two-
dimensional Ising model for T < Tc.

No intuitive reasoning was given in our recent work [10]
as to what might be the physical origin for this unexpected
failure of the finite-size scaling property. It is the purpose
of the present paper to elucidate this unsatisfactory sit-
uation by further analyzing the role played by the corre-
lation length in both bulk and confined lattice systems.
Instead of the second-moment correlation length (1.2) we
consider the “exponential correlation length” ξe that gov-
erns the large-distance behavior of the bulk system at fixed
T above Tc [13],

G(re) ∼ Bd r(1−d)/2 exp(−r/ξe) , (1.6)

where e = r/r is the unit vector in the direction of r and
where ξe is defined by

ξ−1
e = − lim

r→∞
{[lnG(re)]/r}. (1.7)

We note that (1.6) is expected to hold even well above Tc

outside the asymptotic critical region. For lattice systems,
ξe is an anisotropic quantity. It is expected, however, that
the asymptotic ratio limt→0+ ξe/ξ becomes isotropic and
has a universal value [14–18], in agreement with our re-
sults.

In the present paper we shall call attention to the fact
that the non-universal difference between ξ and ξe is non-
negligible even asymptotically close to Tc if the scaling

function has an exponential form. We shall show that lat-
tice effects cause additive non-universal corrections to the
asymptotic form of ξe (see (1.9) below). Since ξe appears
in the exponent of the scaling functions these additive
corrections turn into non-negligible multiplicative overall
factors for the exponential scaling functions of both G(r)
for r� ξe and χ(t, L) for L� ξe.

Because of the anisotropy of ξe for lattice systems,
there exist infinitely many ξe in contrast to the unique
isotropic quantity ξ. Since χ(t, L) ∝ Ĝ(0) ∝

∑
rG(r) in-

volves all directions of r it is not clear a priori whether
a certain average of ξe or ξe in a particular direction e
enters the finite-size scaling form of χ(t, L). Here we shall
find that for cubic geometry the exponential finite-size ef-
fect is determined by the correlation length ξ1 ≡ ξe1

(and
not by ξ 6= ξ1) where e1 is the unit vector in the direction
of one of the cubic axes. Specifically we derive an explicit
relation between ξ1 and ξ in the spherical limit (Sect. 3)
and in one-loop order of the ϕ4 lattice model (Sect. 4).
This relation reads at finite lattice spacing ã

ξ =
ã

2

[
sinh

(
ã

2ξ1

)]−1

(1.8)

= ξ1

[
1− 1

24

(
ã

ξ1

)2

+ · · ·
]
· (1.9)

It is remarkable that the non-universal ã dependence
of (1.4) is completely absorbed by the exponential corre-
lation length ξ1 if the function ξ(ξ1) of (1.8) is substituted
into the right-hand side of (1.4). In the present paper we
shall show that for L� ξ � ã

g
(
L/ξ(ξ1)

)
exp

{
Γ
(
ã/ξ(ξ1)

) L

ξ(ξ1)

}
= g(L/ξ1) , (1.10)

hence universal finite-size scaling below four dimensions
at finite lattice spacing is restored in the form

∆χ = g(L/ξ1) (1.11)

with the universal function g(x).
Thus, at one-loop order and in the spherical (large-n)

limit, there is no violation of finite-size scaling at finite lat-
tice spacing below four dimensions provided that the ex-
ponential correlation length ξ1 rather than ξ is employed
as the bulk reference length. We note that this result is
not a general consequence of the renormalizability of the
ϕ4 theory but is only an explicit computational result for
cubic (and rectangular) geometry in one-loop order and
in the spherical (large-n) limit. It is also valid for the one-
dimensional Ising model (Sect. 6). At present it is an open
question whether this result remains valid at finite n be-
yond one-loop order and whether it can be based on more
general arguments. The renormalization-group (RG) argu-
ments in the limit ã→ 0 [5] are not sufficient to establish
the complete finite-size scaling form for lattice systems.
Although these RG arguments for ã→ 0 lead to the same
universal scaling function g(x) as our analysis at finite ã,
they do not identify the ã dependent finite-size scaling
variable x = L/ξ1.
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We shall also show (Sect. 4) that two different pertur-
bative treatments are necessary to describe the finite-size
effects in the entire asymptotic region 0 ≤ L/ξ ≤ ∞ and
that the previous finite-size perturbation approach below
four dimensions [19–21] does not capture the exponential
structure of the scaling function g(x) ∝ e−x for x� 1.

The necessity of employing ξ1 rather than ξ is not re-
stricted to d < 4 dimensions. In Section 5 we shall discuss
the consequences of our results for lattice systems with
d > 4 where ξ1 rather than ξ should be incorporated in the
two-variable finite-size scaling form [22,23]. The inhomo-
geneous modes are shown to yield ∆χ ∝ e−L/ξ1 for L� ξ
whereas the lowest-mode approximation [19] and the cor-
responding single-variable finite-size scaling form [24] im-
ply ∆χ ∝ L−d.

Very recently an exponential size dependence has been
confirmed by Stauffer [25] in Monte Carlo simulations for
the magnetization of the Ising model in two, three and
five dimensions [26].

In summary, even though we will confirm through (1.9)
(within our approximations) that asymptotically close to
the critical point the two correlation lengths ξ and ξ1 are
the same and isotropic, the scaling form g(x) of the lead-
ing finite-size effect near the bulk limit is sensitive to the
choice of the correlation length because of the exponential
dependence of g(x) ∝ e−x on the correlation length.

2 Lattice effect on the large-distance
behavior of the bulk order-parameter
correlation function

We consider a ϕ4 lattice Hamiltonian for the variables ϕi
on the lattice points xi of a simple-cubic lattice with the
lattice constant ã. The variables ϕi have n components
ϕiα with α = 1, 2, . . . , n which vary in the range −∞ ≤
ϕiα ≤ ∞. We assume the statistical weight ∝ e−H with

H = ãd

∑
i

[r0
2
ϕ2
i + u0(ϕ2

i )
2
]

+
∑
i,j

1
2ã2

Jij(ϕi − ϕj)2


(2.1)

where Jij are the dimensionless couplings of a short-rang
interaction with cubic symmetry and where kBT ≈ kBTc

is absorbed in r0, u0 and Jij . The variables ϕi have the di-
mension

[
ã(2−d)/2

]
. We are interested in the large-distance

behavior of the bulk correlation function

G(xj − x0) =
1
n
〈ϕjϕ0〉 =

∫
k

Ĝ(k)eik(xj−x0) (2.2)

above Tc, normalized to the number of components n,
where

Ĝ(k) =
ãd

n

∑
j

〈ϕjϕ0〉e−ik(xj−x0) (2.3)

with some fixed lattice point x0. In (2.2)
∫
k

stands for
(2π)−d

∫
ddk with a finite lattice-cutoff | km |≤ π/ã,m =

1, 2, . . . , d. First we consider the limit n→∞ at fixed u0n
for d > 2 in which case we obtain [27]

Ĝ(k)−1 = Ĝ(0)−1 + Ĵk , (2.4)

Ĵk =
2
ã2

[J(0)− J(k)], (2.5)

J(k) = (ã/L)d
∑
i,j

J ij e−ik(xj−xi) . (2.6)

Ĝ(0) is determined by an implicit equation [27] which,
however, will not be needed in the following since Ĝ(0)
can be expressed directly in terms of ξ2. Using the second-
moment definition for the bulk correlation length ξ accord-
ing to (1.2) we have [27]

Ĝ(0) = J−1
0 ξ2 , (2.7)

J0 =
1
d

(ã/L)d
∑
i,j

(Jij/ã2)(xi − xj)2. (2.8)

For simplicity we consider a nearest-neighbor interaction
J > 0 which yields

J(k) = 2J
d∑

m=1

cos(kmã), (2.9)

Ĵk =
4J
ã2

d∑
m=1

[1− cos(kmã)] = J0k2 +O(k2
i k

2
j ) (2.10)

with J0 = 2J .
In summary we need to calculate the large-distance

behavior of

G(x) =
ã2

2J

∫
k

eikx

{
(ã/ξ)2 + 2

d∑
m=1

[1− cos(kmã)]

}−1

(2.11)

where we have chosen x0 = 0 and

xj ≡ x = (x1, x2, . . . , xd)

with Cartesian coordinates xm. Equation (2.11) is valid
not only in the large-n limit but also in an ordinary per-
turbation calculation to one-loop order for general n. (For
the latter case a renormalization-group treatment is car-
ried out in Appendix B for d < 4.) A representation of
G(x) in terms of Bessel functions of integer order ν (see,
e.g., 9.6.19 of Ref. [28])

Iν(z) =
1
π

π∫
0

dθ ez cos θ cos(νθ) (2.12)
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can be given as

G(x) =
ã2

2J

∞∫
0

ds e−(ã/ξ)2s

×
∫
k

eikx exp

{
−2s

d∑
m=1

[1− cos(kmã)]

}
(2.13)

=
ã2−d

2J

∞∫
0

ds e−(ã/ξ)2s e−2ds
d∏

m=1

Iνm(2s) (2.14)

with the integers νm = xm/ã. In general, G(x) is an
anisotropic function whose exponential large-distance be-
havior ∼ exp (−|x|/ξe) leads to the definition of an
anisotropic correlation length ξe 6= ξ in the direction of
the unit vector e = x/|x| [13]. An explicit demonstration
of the anisotropy of ξe is given in Appendix A where the
angular dependence of ξe is calculated for the case where e
lies in the 2-dimensional x1−x2 plane of the d-dimensional
bulk system. For our present purpose it suffices to con-
sider only the special case where e = e1 = (1, 0, 0...) is
the unit vector along one of the cubic axes. Then we have
x = (x, 0, 0...) and kx = kxx. The corresponding correla-
tion function is denoted by C(x) = G(x) which is obtained
from (2.14) as

C(x) =
ã2−d

2J

∞∫
0

ds e−(ã/ξ)2s e−2ds[I0(2s)]d−1Ix/ã(2s).

(2.15)

This result is valid for arbitrary x/ã and ξ/ã and therefore
does not yet have a scaling form. In Appendix A the large-
|x| behavior of C(x) at arbitrary fixed ξ/ã is derived. The
result is

C(x) =
ã2−d

4J

(
ã

2π|x|

)(d−1)/2 [
sinh

(
ã

ξ1

)](d−3)/2

× e−|x|/ξ1
[
1 +O(|x|−1)

]
. (2.16)

We see that in the large-|x| limit the natural reference
length is the exponential correlation length ξ1 ≡ ξe1 in the
direction of one of the cubic axes rather than the second-
moment correlation length ξ. The exact relation between
ξ1 and ξ for n→∞ reads

ξ−1 =
2
ã

sinh
(
ã

2ξ1

)
(2.17)

or

ξ−1
1 =

2
ã

arsinh
(
ã

2ξ

)
· (2.18)

The difference between ξ and ξ1 is a true lattice effect that
disappears in the formal limit ã → 0. Equations (2.17,
2.18) are also valid for finite n in one-loop order above

Tc but in two-loop order and beyond we expect (small)
corrections to (2.17) and (2.18) for finite n.

Equations (2.16–2.18) are valid for arbitrary ξ1/ã even
well above Tc. In the asymptotic region ξ1 � ã, (2.16)
attains the scaling form

C(x) ∼ (ã/|x|)d−2+η
Φ (|x|/ξ1) (2.19)

with the scaling function for |x|/ξ1 � 1

Φ (|x|/ξ1) = Ã
ã2−d

4J(2π)(d−1)/2

(
|x|
ξ1

) 1
2 (d−3)+η

× exp (−|x|/ξ1) (2.20)

where η = 0 and Ã = 1 in the present case of the limit
n→∞. Equations (2.19, 2.20) are also valid for general n
in one-loop order for d < 4, see Appendix B. In this case
we have a critical exponent η > 0 and an amplitude Ã 6= 1
which we obtain from a RG treatment at finite ã [10],
applied to the bare one-loop result (2.11) for general n,
as described in Appendix B. Equations (2.19, 2.20) are
also valid in one-loop order for general n and d > 4 where
η = 0 and Ã = 1, apart from O (u2

0) corrections.
Close to Tc where both ξ and ξ1 diverge, an expansion

of (2.18) yields

ξ1 = ξ

[
1 +

1
24

(
ã

ξ

)2

+ · · ·
]
· (2.21)

Thus, for n → ∞, ξ1 and ξ become identical sufficiently
close to Tc. (This is also valid for finite n in one-loop order
above Tc but in two-loop order and beyond the asymptotic
value of the ratio ξ1/ξ for T → Tc is expected to become
different from 1 (see e.g. Refs. [14–18].) Therefore ξ1 can
be replaced by ξ in the prefactor of (2.20). We emphasize,
however, that a replacement of ξ1 by ξ is not possible in the
exponential part of (2.16, 2.20), even arbitrarily close to
Tc. This is seen by substituting (2.21) into the exponential
function of (2.16) and (2.20),

e−|x|/ξ1 = exp
(
|x|ã2/24ξ3

)
e−|x|/ξ, (2.22)

C(x) ∼ (ã/|x|)d−2+η Φ (|x|/ξ) exp
(
|x|ã2/24ξ3

)
. (2.23)

Now the additive correction in (2.21) has turned into an
exponential non-universal prefactor in (2.22) and (2.23)
that cannot be simply replaced by 1 and that is by no
means negligible for sufficiently large |x| & 24ξ3/ã2, even
in the asymptotic critical region ξ � ã. This is the crucial
point of our argument.

Thus, in order to have a universal (ã independent)
scaling form of C(x) for large |x| � ξ at fixed T above
Tc where C(x) has an exponential form, it is inescapable
to employ ξ1 rather than ξ as the appropriate reference
length. Correspondingly, for any T > Tc, there exists an
infinitely large region |x| & 24 ξ3/ã2 where the anisotropy
of G(x) is no longer a negligible correction to the isotropic
part. In the critical region ã � |x| � ξ, on the other
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hand, where G(x) has a power-law behavior the nonuni-
versal part of the difference between ξ and ξe can be con-
sidered as a negligible non-asymptotic additive correction.
The natural reference lengths in these two regions are ξ
and ξe, respectively, and a complete scaling description
should embody a kind of crossover in the scaling variable
from |x|/ξ to x/ξe. The same situation will arise in the
finite-size problem with respect to the L dependence of
the susceptibility that is analyzed in the next section.

The analysis of this section can be extended to the con-
tinuum version of the ϕ4 theory. In a separate paper [29]
we shall show that the results depend on the cutoff proce-
dure. An (isotropic) exponential large |x| behavior of G(x)
is found for a smooth cutoff whereas a sharp cutoff implies
a nonuniversal non-exponential |x|-dependence of G(x). In
the case of a smooth cutoff it is also found that the expo-
nential correlation length differs from the second-moment
correlation length even though the continuum system is
isotropic.

3 Lattice effect on the finite-size scaling
behavior for n→∞

We consider the lattice Hamiltonian (2.1) for a finite hy-
percubic geometry with volume V = Ld and with periodic
boundary conditions. We are interested in the exact large-
L behavior of the susceptibility χ = Ĝ(0) above Tc in the
large-n limit at finite lattice spacing ã. Specifically we wish
to identify the reference length that governs the expected
exponential L-dependence at fixed T > Tc. The answer is
not clear a priori since in the sum

χ =
ãd

n

∑
j

〈ϕjϕ0〉 (3.1)

there are contributions from 〈ϕjϕ0〉 in all directions in-
volving all anisotropic correlation lengths ξe discussed in
the preceding section. The finite-size effect on χ at fi-
nite lattice constant ã has already been calculated pre-
viously [10,22,27] where it was expressed in terms of the
second-moment correlation length ξ. Here we shall demon-
strate that ξ1 as calculated in the preceding section, rather
than ξ, is the appropriate reference length in the finite-size
scaling structure.

We start from the implicit equation for n→∞ at fixed
u0n [27]

χ−1 = r0 + 4u0nL
−d
∑
k

(
Ĵk + χ−1

)−1

(3.2)

which can be rewritten as

χ−1 = r0 − r0c + 4u0nD
(
χ−1, L, ã

)
− 4u0nχ

−1

∫
k

[
Ĵk

(
Ĵk + χ−1

)]−1

(3.3)

where r0c = −4u0n
∫
k
Ĵ−1

k . The finite-size effect is con-
tained in the function

D
�
χ−1, L, ã

�
= L−d

X
k

�
Ĵk + χ−1

�−1

−
Z

k

�
Ĵk + χ−1

�−1

(3.4)

=

∞Z

0

ds̃ e−s̃/χ

8<
:L
−dX

k

e−s̃Ĵk −
Z

k

e−s̃Ĵk

9=
; .

(3.5)

The summations run over discrete k vectors with compo-
nents kj = 2πmj/L, mj = 0,±1,±2, . . . , j = 1, 2, . . . , d,
in the range −π/ã ≤ kj < π/ã. Since Ĵk is a periodic
function of each component kj the sum in (3.5) satisfies
the Poisson identity [5,30]

L−d
∑
k

e−s̃Ĵk =
∑
n

∫
k

e−s̃Ĵkeik·nL (3.6)

where k ·n =
∑
j kjnj . The sum

∑
n runs over all integers

nj, j = 1, 2, . . . , d in the range −∞ ≤ nj ≤ ∞ whereas∑
k and

∫
k

have finite cutoffs ±π/ã. For the case of a
nearest-neighbor coupling J > 0 we have

e−s̃Ĵk =
d∏

m=1

exp
{
−4Js̃
ã2

[1− cos(kmã)]
}
. (3.7)

This leads to the representation in terms of the Bessel
functions Iν(z), (2.12),∫

k

e−s̃Ĵk =
[
ã−1e−2sI0(2s)

]d
, (3.8)

L−d
∑
k

e−s̃Ĵk =

[
ã−1

∞∑
n=−∞

e−2sIνn(2s)

]d
(3.9)

where s = 2s̃J/ã2 and where νn = nL/ã are integers. The
resulting expression for D reads

D
(
χ−1, L, ã

)
=
ã2−d

2J

∞∫
0

ds e−ã
2s/(2Jχ)e−2ds

×


[
I0(2s) +

∞∑
n=1

2Iνn(2s)

]d
− [I0(2s)]d

 . (3.10)

The large-L limit corresponds to large integers νn = nL/ã.
Since we consider this limit at fixed temperature above
Tc we may replace χ(t, L) in the exponent of (3.10) by
the bulk value χb = ξ2/2J . For the asymptotic behavior
of Iν(2s) we refer to Appendix A. The leading term for
L� ξ comes from the n = 1 contribution in (3.10),

D
(
χ−1, L, ã

)
=
(
dã2−d/J

)
×
∞∫

0

ds e−(ã/ξ)2se−2ds [I0(2s)]d−1 IL/ã(2s). (3.11)
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This integral is identical with that of the bulk correlation
function (2.15), except that the argument x/ã in (2.15)
is replaced here by L/ã. Therefore the large-L behavior
of (3.11) is analogous to the large-|x| behavior of (2.16),

D
(
χ−1, L, ã

)
=
dã2−d

2J
(2πL/ã)(1−d)/2 [sinh(ã/ξ1)](d−3)/2

× e−L/ξ1
[
1 +O(L−1)

]
(3.12)

for L � ξ1 where ξ1 is the exponential bulk correlation
length in the direction of one of the cubic axes as deter-
mined by (2.18). The exact parallelism between the large-
distance behavior of the correlation function C(x) and the
large-L behavior of the susceptibility χ(t, L) is the central
result of this paper. On physical grounds it is quite plau-
sible that for L� ξ there exists a sensitivity of finite-size
effects to the length ξ1 governing the large-distance decay
of C(x) rather than to an averaged length as represented
by the second moment ξ of the correlation function.

The result (3.12) can be extended to a d-dimensional
system with partially finite geometry that is confined in d̃
dimensions and infinite in d − d̃ dimensions. In this case
the prefactor d in (3.12) is replaced by d̃. For d̃ = 1 (film
geometry) we find agreement with the result of Barber and
Fisher [31,32]. The authors did not recognize, however,
that their quantity Γd(T ) = 2arsinh

(
Φ

1/2
0 /2

)
is identical

with the inverse of the exponential bulk correlation length
ξ1/ã.

The result (3.3) together with (3.12) is still valid for ar-
bitrary ξ1/ã even well above Tc. Using the known expres-
sion for the bulk susceptibility χb [10] we obtain from (3.3)
and (3.12) the relative deviation from the bulk critical be-
havior for L� ξ1 � ã as

∆χ ≡ χb − χ
χb

= g(L/ξ1) (3.13)

with the universal function in the large-n limit for 2 <
d < 4

g(L/ξ1) = 2dπ1/2 [Γ ((4− d)/2)]−1

× (2ξ1/L)(d−1)/2 e−L/ξ1 . (3.14)

This result agrees with and goes beyond our previ-
ous result in (132–134) or (135) of reference [10] which
was expressed in terms of ξ rather than ξ1 (compare
also (1.4, 1.10) of the present paper). Previously we did
not yet recognize the physical origin of the non-scaling
contributionR(L/ξ, ã/ξ) in (134) of reference [10]. Now we
see that ξeff as defined in the paragraph after (107) of refer-
ence [10] turns out to be identical with ξ1. This is parallel
to the bulk order-parameter correlation function of Sec-
tion 2. Thus our previous interpretation in terms of a vio-
lation of finite-size scaling below four dimensions in the re-
gion L� ξ was incomplete for the lattice system (but not
for the continuum system with a sharp cutoff [10,29,33]).
In the critical region ξ � L, on the other hand, the nat-
ural reference length remains to be ξ and not ξ1. In this

region the function g(x) has a power-law form (not expo-
nential) in which the non-universal part of the difference
between L/ξ1 and L/ξ can be considered as a negligible
correction.

We conclude that nonuniversal and non-negligible lat-
tice effects do exist in the region L � ξ but they can be
absorbed in the finite-size scaling argument by employ-
ing the exponential bulk correlation length. This remedies
the apparent violation of finite-size scaling found previ-
ously below four dimensions [10] and simplifies the phys-
ical picture of critical behavior in confined lattice sys-
tems with periodic boundary conditions. Nevertheless we
maintain that a scaling description of the entire region
0 ≤ L/ξ ≤ ∞ requires to embody in the scaling function
a kind of crossover in the finite-size scaling variable from
x = L/ξ for 0 ≤ x . O(1) to x = L/ξ1 for O(1) ≤ x ≤ ∞.

So far our conclusions have only been shown to be
correct in the spherical (large-n) limit for 2 < d < 4
(and in one-loop order, see Sect. 4, see also Sect. 6 for
the d = 1 Ising model). We note that equation (3.14) has
a finite limit also for d → 2 at fixed ξ1. Further work
is needed to prove whether finite-size scaling for lattice
systems with periodic boundary conditions below four di-
mensions is indeed an asymptotically exact property for
finite n beyond one-loop order. General renormalization-
group arguments [3,5] are not sufficient for such a proof,
as shown in Section 3 of reference [10].

For a corresponding analysis of the large-L behavior
above Tc within the continuum ϕ4 theory we refer to ref-
erences [10,29,33]. In this case an exponential size depen-
dence of ∆χ is found only for a smooth cutoff whereas
a sharp cutoff implies a nonuniversal non-exponential L
dependence of ∆χ [10,29,33].

4 Perturbative treatment of finite-size effects
for d < 4

In this section we present two different perturbative treat-
ments of the finite-size effects of the lattice model (2.1) for
finite n. We shall focus our interest on ∆χ in the region
L � ξ above Tc where lattice effects are expected to be
non-negligible according to the exact results of the preced-
ing section. In particular we show that only the first ver-
sion of the perturbative treatment (in Sect. 4.1) correctly
predicts the exponential size-dependence of ∆χ ∝ e−L/ξ1 .

4.1 Ordinary perturbation theory

First we use ordinary perturbation theory with respect to
u0 without separating the lowest (k = 0) mode of ϕ(x). In
one-loop order above Tc the inverse (bare) susceptibility of
the lattice model (2.1) in a cubic geometry with periodic
boundary conditions is given by [10]

χ−1 = J0ξ
−2

×
[
1 + 4(n+ 2)u0J

−2
0 ξ2D̃(ξ, L, ã) +O(u2

0)
]

(4.1)
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with

D̃ = L−d
∑
k

(
ξ−2 + Ĵk/J0

)−1

−
∫
k

(
ξ−2 + Ĵk/J0

)−1

(4.2)

where ξ is the second-moment correlation length. The
function

D̃(ξ, L, ã) = J0D(J0ξ
−2, L, ã) (4.3)

can be represented in terms of Bessel functions according
to (3.10) and (3.11). Equations (4.1–4.3) are valid for gen-
eral d > 2. Because of the k = 0 term in the sum of (4.2)
the perturbative expression (4.1) is not applicable to the
region ξ � L. In this region a separation of the lowest
mode from the higher modes is necessary (see Sect. 4.2).
But here we are interested in the region L� ξ where the
function D̃ is well behaved according to (3.12). Applying
the RG procedure of reference [10] to the bare expres-
sion (4.1) and using the asymptotic form (3.12) leads to
the scaling result for d < 4 and for L� ξ1 � ã

∆χ = g(L/ξ1)

= 4(n+ 2)u∗d(2πL/ξ1)(1−d)/2e−L/ξ1 +O(u∗2) (4.4)

where u∗ is the fixed point value of the renormalized
coupling [34] and where ξ1 is the exponential bulk cor-
relation length given by (2.18), up to two-loop correc-
tions. Equation (4.4) has the same form as (3.14). It
also agrees with and goes beyond our previous pertur-
bative result (106) of reference [10]. Now we see that it
is ξ1 = ξ/[1− (ã/ξ)2/24 + · · · ] rather than ξ that should
be employed in the scaling representation, similar to the
case n→∞ discussed in the preceding section. Thus the
interpretation of reference [10] in terms of a violation of
finite-size scaling was incomplete since the lattice constant
ã can be absorbed in ξ1 in a natural way. The conclusions
drawn in the preceding section after (3.14) regarding the
validity of finite-size scaling in terms of ξ1 apply also to
finite n, at least in one-loop order. (Beyond one-loop order
we expect that the exponential part of (4.4) contains the
bulk correlation length ξ1 whose universal amplitude ra-
tio limt→0+ ξ1/ξ is slightly larger than 1 [14,16].) Clearly
these conclusions can be extended to a d-dimensional sys-
tem with partially finite geometry that is confined in d̃
dimensions and is infinite in d− d̃ dimensions. In this case
the result (4.4) remains valid except that the prefactor d
should be replaced by d̃ [10]. The result of this section will
be extended to the case of the continuum ϕ4 theory in a
separate paper [29].

4.2 Separation of the lowest mode

In the following we discuss the result for ∆χ for L � ξ
if the standard finite-size perturbation theory [19–22] is
used. The details of the calculation are given in Ap-
pendix C. In this approach the lowest mode is separated

and treated exactly whereas the higher modes are treated
perturbatively. Accordingly we decompose

ϕj = Φ+ L−d
∑
k 6=0

eik·xj ϕ̂k (4.5)

and H = H0 +H ′ with

H0(Φ) = Ld
(

1
2
r0Φ

2 + u0Φ
4

)
. (4.6)

The susceptibility (3.1) is expressed as

χ =
1
n

〈
Φ2
〉

=
Ld

n

∫
dnΦ Φ2P (Φ) (4.7)

where

P (Φ) = exp
[
−Heff(Φ)

]/∫
dnΦ exp

[
−Heff(Φ)

]
(4.8)

is the order-parameter distribution function with the ef-
fective Hamiltonian

Heff(Φ) = H0(Φ) + Γ0(Φ). (4.9)

The present approach consists of a perturbative expansion
of Γ0(Φ) in the exponent of P (Φ) and not of an expansion
of χ itself. It turns out that this approach does not capture
the correct (exponential) size dependence of ∆χ for L� ξ
but instead yields

∆χ ∝ L−d (4.10)

in any finite order of perturbation theory (see Appen-
dix C).

The failure of this approach is due to the fact that the
separation of the zero mode [19–22] is inadequate in the
region L� ξ. In this region the zero mode does not have
a dangerous character and all modes including the k = 0
mode should be treated in the same way. This argument is
valid for general d > 2 including d > 4 (Sect. 5). The am-
plitude A(u0) of the spurious power law ∆χ ∝ A(u0)L−d
is only partially cancelled order by order in a perturbative
treatment of the higher modes but A(u0) remains nonzero
at any finite order of perturbation theory. A complete can-
cellation of A(u0) is achieved only in an exact treatment
of the k 6= 0 modes as can be seen from the exact solution
for n → ∞ (see Eqs. (12, 21) of Ref. [33]). These consid-
erations are insensitive to the lattice spacing and remain
valid also within the continuum ϕ4 theory [29].

We conclude that the perturbative calculation of finite-
size effects above and at Tc requires two different ap-
proaches depending on whether 0 ≤ L/ξ . O(1) or
O(1) . L/ξ ≤ ∞. In the former case the separation
of the lowest mode is appropriate. In the latter case
which includes the approach to the bulk limit at fixed
T > Tc one should employ the ordinary perturbation ap-
proach of Section 4.1 where all modes are treated per-
turbatively. To combine the results of both approaches
requires some matching in an intermediate range of L/ξ.
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The good agreement of our previous finite-size calcula-
tions [21] with highly accurate Monte-Carlo data for the
three-dimensional Ising model [35] was restricted to the re-
gion 0 ≤ L/ξ . O(1) whereas the region O(1) . L/ξ ≤ ∞
was not investigated. The exponential size dependence in
the latter region is not correctly included in the results of
reference [21]. The same criticism applies to other finite-
size calculations in the literature which are based on the
separation of the lowest mode. Although these exponen-
tial effects are small they are detectable and clearly distin-
guishable from power-law terms as has been demonstrated
very recently by Monte-Carlo simulations for the magneti-
zation of the two- and three-dimensional Ising model [26].

5 Finite-size effects for d > 4

In this section we extend our study of finite size effects to
d > 4 within the lattice model (2.1) for cubic geometry
and periodic boundary conditions. We focus our interest
on the approach of the susceptibility χ to the bulk sus-
ceptibility χb above Tc. To provide a correct description
of this approach is a basic task of finite-size theory. This
corresponds to the region L � ξ where the exponential
correlation length ξ1 is expected to become an important
length scale according to the results of the preceding sec-
tions. We shall show that, in addition to ξ1, the second ref-
erence length [22,27,36] l0 ∼ u1/(d−4)

0 associated with the
higher (inhomogeneous) modes remains relevant for the
large-L behavior of χ and that a single-variable (lowest-
mode) finite-size scaling description [19,24] of χ fails for
L� ξ.

5.1 Exact results for n→∞

For χb � ã2 the inverse bulk susceptibility above Tc for
4 < d < 6 and n→∞ at fixed u0n is determined by

χ−1
b = r0 − r0c − 4u0nχ

−1
b

×
∫
k

Ĵ−2
k

{
1 +O

[
(d− 4)−1

(
χ−1

b ã2
)(d−4)/2

]}
(5.1)

as follows from (3.3) for L→∞. From (5.1) and (3.3) we
then obtain the leading relative deviation of χ from χb for
∆χ� 1 as

∆χ ≡ χb − χ
χb

= ld−4
0 χbJ

2
0D(χ−1

b , L, ã) +O
[
(∆χ)2

]
(5.2)

with the reference length [27]

l0 =

 4u0n

J2
0

(
1 + 4u0n

∫
k

Ĵ−2
k

)


1/(d−4)

· (5.3)

The bulk susceptibility can be expressed in terms of the
second-moment correlation length ξ as χb = J−1

0 ξ2. Using
the large-L behavior of D(χ−1

b , L, ã) according to (3.12)
we obtain from (5.2) for L� ξ

∆χ ∼ d(2π)(1−d)/2(L/l0)4−d(L/ξ)−2

× [(L/ã) sinh(ã/ξ1)](d−3)/2 e−L/ξ1 (5.4)

where now the exponential bulk correlation length ξ1,
(2.18), governs the exponential size dependence, similar
to the case d < 4. In the asymptotic region ξ � ã we may
replace ξ by ξ1 in the non-exponential part of (5.4). This
yields the two-variable finite-size scaling form

∆χ = g
(
L/ξ1, (L/l0)4−d) (5.5)

with the exact scaling function for L� ξ � ã

g(x, y) = d(2π)(1−d)/2yx(d−7)/2e−x. (5.6)

Unlike the corresponding scaling function g(x) in (3.14)
for d < 4 we see that here we need two scaling variables
x = L/ξ1 and y = (L/l0)4−d. In the present context where
the lowest mode plays no particular role, the second vari-
able y is associated with the higher modes and has noth-
ing to do with the dangerous character of u0. The present
result (5.5, 5.6) complements our previous two-variable
finite-size scaling function (138–142) for the lattice model
in reference [27] where ξ instead of ξ1 was employed [37].
A complete description of the scaling form of χ in the en-
tire (asymptotic) L−1− ξ−1 plane requires to incorporate
in g(x, y) a kind of crossover from the variables (L/ξ, y)
for the region 0 ≤ L/ξ . O(1) to (L/ξ1, y) for the region
O(1) . L/ξ1 ≤∞.

We recall that an alternative choice of the scaling vari-
ables (L/ξ, y) is (w, y) where [22]

w = (L/ξ)2y−1/2 = t(L/ ˜̀)d/2, ˜̀= l0(ξ0/l0)4/d. (5.7)

Correspondingly the susceptibility can be represented
as [22]

χ = Ld/2P̃ (w, y). (5.8)

Instead of (w, y) an equivalent choice is (w2/d, y) where

w2/d = L/`T (5.9)

contains Binder’s “thermodynamic length” `T [38] which
is related to ξ0 and l0 as

`T = l
(d−4)/d
0 ξ4/d = l

(d−4)/d
0 ξ

4/d
0 t−2/d. (5.10)

This length scale, together with l0, plays an important
role in the region 0 ≤ L/`T . O(1) where the dangerous
character of u0 is important (corresponding to the region
between the curved lines in Fig. 1 of reference [22]) but
`T loses its significance outside this region. In particular
in the region O(1) . L/ξ ≤ ∞ the correlation length
ξ1 (and ξ) and the reference length l0 associated with
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the higher modes [22] govern the finite-size effects, as
demonstrated by (5.4–5.6). Thus, not `T alone but ξ1 and
l0 are indispensable for a complete description of the finite-
size effects in the entire asymptotic (large L, small t) re-
gion for d > 4. In the following subsection we show that
ignoring the lengths ξ or ξ1 and l0 implies an incorrect
large-L dependence of χ at any fixed T > Tc.

5.2 Lowest-mode approximation for n→∞

Neglecting the k 6= 0 contributions to χ leads to

χ0 = 2
[
r0 +

(
r2
0 + 16u0nL

−d)1/2]−1

(5.11)

for n → ∞ at fixed u0n. In this approximation we have
χ0

b = r−1
0 = (a0t)−1.

This yields

∆χ0 ≡
χ0

b − χ0

χ0
b

= 1− 2
[
1 +

(
1 + 16u0nr

−2
0 L−d

)1/2]−1

. (5.12)

In the present approximation the lengths ξ0 and l0 are
reduced to

ξ0 = (J0/a0)1/2, l0 =
(
4u0nJ

−2
0

)1/(d−4)
. (5.13)

Thus ∆χ0 can be expressed in terms of the thermody-
namic length `T, (5.10), as

∆χ0 = 1− 2
{

1 +
[
1 + 4 (`T/L)−d

]1/2}−1

(5.14)

= (L/`T)−d +O
(
L−2d

)
(5.15)

for L � `T. Comparison of (5.14) with (5.4–5.6) shows
that the lowest-mode approximation [19] fails both with
regard to the L dependence of∆χ as well as with regard to
the temperature dependence of the reference length scale
`T 6= ξ1 in the scaling variable.

The same criticism applies to the phenomenological
single-variable scaling form ∆χ = f(L/`T) proposed by
Binder et al. [24]. The recent statement [39] that the
single-variable scaling form is presumably true asymptot-
ically for L → ∞ is correct for T = Tc (more precisely,
for L → ∞ at fixed finite w). Furthermore, the lowest-
mode result χ0(t, L) = Ld/2P̃ (w, 0) correctly contains the
limit χ0

b(t) = χ0(t,∞) of χ0(t, L) for L→∞ at fixed L/ξ
(see Eq. (104) of [22] and Eq. (102) of [27]) but does not
correctly describe the size dependence in approaching this
limit χ0

b(t) (see Eq. (104) of [27]). A corresponding state-
ment is also true with regard to the magnetization below
Tc as confirmed by Monte Carlo simulations for the d = 5
Ising model [40]. As pointed out in [40], the property

lim
L→∞

χ(t, L)/χb(t) = 1 (5.16)

at arbitrary fixed L/ξ is a nontrivial feature that is valid
only for d > 4 and that is correctly contained in the

lowest-mode approximation and in the Binder et al. scal-
ing form whereas for d < 4 the same limit yields the func-
tion f(L/ξ) 6= 1 for L/ξ <∞.

For any fixed T 6= Tc, however, the leading size de-
pendence ∝ L−d predicted by the single-variable scaling
form [24] is incorrect. The origin for this defect are the
missing higher modes. At fixed w for large L, these modes
only cause (slowly decaying) corrections ∼ O(y1/2) to the
leading size dependence Ld/2P̃ (w, 0) of the lowest-mode
approximation [22]. For fixed T 6= Tc and large L cor-
responding to w � 1 and y � 1, however, the higher
modes and the lowest mode must be treated in the same
way, as shown in Section 4.2, and the effects of the higher
modes become increasingly dominant with increasing L/ξ
and can no longer be considered only as corrections.

More specifically, the structure of the scaling func-
tion (5.8) can be written as

Ld/2P̃ (w, y) = Ld/2P̃ (w, 0) +∆(t, L) (5.17)

where ∆ describes the size effect of the higher modes. The
size effect ∆0 of the zero mode is contained in

Ld/2P̃ (w, 0) = χb(t) +∆0(t, L) (5.18)

where χb(t) is the bulk susceptibility. The crucial point
now is that for sufficiently large L� ξ the structure of ∆
becomes [33]

∆ = −∆0 +O(e−L/ξ1), (5.19)

i.e., the zero-mode size dependence of∆0 ∝ L−d is exactly
cancelled by the higher-mode size dependence of ∆. Thus,
∆ is not small compared to ∆0 and it is inadequate to
refer to the size effects of ∆ only as “corrections to the
lowest-mode result” [39,41].

5.3 Perturbative treatment for finite n

For finite n a perturbative treatment of the finite-size ef-
fects becomes necessary. Our arguments (in Sect. 4) for the
necessity of two different perturbative approaches remain
valid also for d > 4. A one-loop perturbation calculation
on the basis of a separation of the lowest mode was pre-
sented recently [22] for the case n = 1. The results of this
calculation are applicable to the region 0 . L/ξ . O(1)
but the quality of this approach deteriorates with increas-
ing L/ξ in the region O(1) . L/ξ ≤ ∞. For the latter re-
gion the following ordinary perturbation calculation with
respect to u0 is appropriate.

The bare perturbative one-loop expression (4.1) re-
mains valid also for d > 4. This leads to

∆χ = 4(n+ 2)u0J
−2
0 ξ2D̃(ξ, L, ã) +O(u2

0) (5.20)

where D̃ is given by (4.3) and (3.10). Here we interpret
the prefactor 4(n+ 2)u0J

−2
0 as ld−4

0 +O(u2
0) as indicated

by the result (5.2) for χ in the large-n limit. Using (4.3)
and (3.12) for L � ξ we arrive at the same expression
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for ∆χ as given already in (5.4) where now the reference
length l0 for finite n is

l0 =


4u0(n+ 2)

J2
0

[
1 + 4u0(n+ 8)

∫
k

Ĵ−2
k

]


1/(d−4)

· (5.21)

The coefficient 4(n+8) in the denominator is inferred from
the form (5.3) in the large-n limit and from the previous
result in (30) of reference [22] for n = 1. (Our present
definition of l0 differs from that of reference [22] by the
factor [4(n + 2)]1/(d−4)). In the asymptotic region L �
ξ � ã we arrive at a one-loop scaling form of ∆χ for finite
nwhich is identical with (5.5) and (5.6). The n dependence
enters only the expressions for l0 and

ξ0 = (J0/a0)1/2

1 + 4(n+ 2)u0

∫
k

Ĵ−2
k

1/2

. (5.22)

For n = 1 this result for ∆χ complements our previous
two-variable finite-size scaling functions (97, 99) in refer-
ence [22] which did not yet incorporate the exponential
size dependence ∝ e−L/ξ1 for L� ξ.

Similar to the case n → ∞, the lowest-mode approxi-
mation [19] and the phenomenological single-variable scal-
ing form [24] lead to the incorrect power law for finite n

∆χ0 =
4(n+ 2)u0

r2
0

L−d +O
(
L−2d

)
= (L/`T)−d +O

(
L−2d

)
(5.23)

with `T given by (5.10). Our comments after (5.14) apply
also to (5.23). In summary, while the two-variable scal-
ing form correctly embodies the L-dependent approach
∝ e−L/ξ1 to the bulk limit at fixed T > Tc this crucial in-
formation is lost in the single-variable scaling form and in
the lowest-mode approximation. Therefore the reduction
of the two scaling variables to a single scaling variable is
not justified.

Very recently our prediction of the exponential size de-
pendence (5.6) has been confirmed by Monte Carlo simu-
lations for the five-dimensional Ising model [25,26].

An analysis of finite-size effects for d > 4 within the
continuum ϕ4 theory will be given in a separate paper [29]
where it is shown that the finite-size effects depend signif-
icantly on the cutoff procedure. For a smooth cutoff the
results for the Binder cumulant at Tc and for the two-
variable finite-size scaling function of χ are found to be
different from those found previously [22,27,33,36,42] for
a sharp cutoff, see also the note added in reference [10].

6 One-dimensional Ising model

In this section we illustrate in an elementary way the
close connection between the exponential bulk correlation

length ξ1 and the finite-size scaling structure for the ex-
ample of the exactly solvable one-dimensional Ising model.
Although the critical temperature Tc = 0 vanishes, this
model has well-defined correlation lengths ξ and ξ1 6= ξ
for T > 0, which diverge for T → Tc = 0.

First we consider spins sj = ±1 on sites xj of an infi-
nite chain with a lattice spacing ã. The Hamiltonian reads

H = −J
∞∑

j=−∞
sjsj+1 . (6.1)

The correlation function is well-known, see e.g. refer-
ence [43]. The exact result has an exponential form for
arbitrary distances |xi − xj |,

〈sisj〉 = exp(−|xi − xj |/ξ1) (6.2)

with the exponential correlation length

ξ1 = ã[ln(λ+/λ−)]−1 (6.3)

where λ+ and λ− are the eigenvalues of the transfer ma-
trix [43] with λ+ > λ−. Obviously (6.2) has a scaling form
in terms of ξ1.

In order to calculate the correlation length ξ as defined
in (1.2) we consider the Fourier transform

Ĝ(k) =
∞∑

j=−∞
〈s0sj〉 exp(−ikjã) (6.4)

where s0 denotes the spin on a fixed site x0. Using (6.2)
and (6.3) we obtain

Ĝ(k) =
1− (λ−/λ+)2

1 + (λ−/λ+)2 − 2(λ−/λ+) cos kã
· (6.5)

This leads to the exact result Ĝ(0) = exp(2βε) and

ξ2 = Ĝ(0)
∂

∂k2

[
Ĝ(k)

]−1

|k=0

=
ã2

4 [sinh(ã/2ξ1)]2
(6.6)

where ξ1 is given by (6.3). This relation between ξ and ξ1
is identical with (2.17) or (2.18) which was derived for the
ϕ4 model in the large-n limit in Section 3 and in one-loop
order in Section 4. In particular we again have ξ1/ξ → 1
for T → Tc = 0.

Now we consider the finite-size effect on the suscep-
tibility χL of a finite one-dimensional Ising chain which
consists of N spins and which has a length L = Nã. We
assume periodic boundary conditions. The partition func-
tion is [43] ZN = λN+ + λN− which is valid also at finite
magnetic field h. The second derivative with respect to h
leads to the exact finite-size scaling form of the relative
deviation from the bulk susceptibility at h = 0

∆χ =
χ∞ − χL
χ∞

=
2e−L/ξ1

1 + e−L/ξ1
· (6.7)

Equation (6.7) is valid for arbitrary L/ξ1 where ξ1 is iden-
tical with the exponential bulk correlation length (6.3).
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The crucial point is that L/ξ1 and not L/ξ is the nat-
ural finite-size scaling variable. If ∆χ were expressed in
terms of ξ then an apparent violation of finite-size scaling
would arise from the ã dependent difference between ξ1
and ξ,

∆χ = 2e−L/ξ exp
(
Lã2/24ξ3

)
(6.8)

for L � ξ � ã, in the same way as found previously [10]
for the ϕ4 model. Similarly, the bulk scaling form for the
correlation function would be violated if the result (6.2)
would be expressed in terms of ξ. Thus the exact re-
sults (6.2, 6.6, 6.7) demonstrate in an elementary way the
significant difference between ξ and ξ1 as well as the close
connection between bulk and finite-size scaling.

It would be interesting to extend this analysis to the
exact results for the two-dimensional Ising model [44,45]
and to compare these results with the exponential size
dependence found in recent Monte Carlo data in Figure 2c
of reference [26].

Note added in proof

The distinction between ξ and ξ1 is significant also for re-
solving discrepancies in the interpretation of Monte Carlo
simulation results of percolation phenomena [46].
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Appendix A: Anisotropy of the exponential
correlation length

We start from (2.14) for the case where x = (x1, x2, 0, ...),

G(x) =
ã2−d

2J

∞∫
0

ds e−(ã/ξ)2s

× e−2ds[I0(2s)]d−2Iν1
(2s)Iν2

(2s) (A.1)

with νi = |xi|/ã. For large ν and large s = νz/2 we
have [47]

Iν(νz) ∼ (2πν)−1/2q−1/2 exp
(
ν
{
q + ln

[
z(1 + q)−1

]})
(A.2)

with q = (1 + z2)1/2. Furthermore we use the large-s be-
havior [48]

I0(2s) = e2s(4πs)−1/2
[
1 +O

(
s−1
)]
. (A.3)

For sufficiently large νi a saddle-point approach suffices
to perform the integration over s and to determine the

exponential large-|xi| behavior of (A.1). Introducing the
angle θ according to ν1 = r cos θ, ν2 = r sin θ we obtain
the exponential part of G(x) as

G(x) ∼ exp {−|x|/ξ1(θ)} (A.4)

where ξ1(θ) denotes the anisotropic exponential correla-
tion length. The angular dependence is given by

ã

ξ1(θ)
= (cos θ) ln

[
u1/2 cos θ + (1 + u cos2 θ)1/2

]
+ (sin θ) ln

[
u1/2 sin θ + (1 + u sin2 θ)1/2

]
(A.5)

where

u = b(b2 − 4)
[
b+

(
b2 sin2 2θ + 4 cos2 2θ

)1/2]−1

, (A.6)

b = 2 + (ã/ξ)2/2. (A.7)

For the case θ = 0 this yields

ξ1(0) =
ã

2

[
arcsinh

(
ã

2ξ

)]−1

(A.8)

corresponding to (2.18). For the case θ = π/4 the result is

ξ1(π/4) =
ã

23/2

[
arcsinh

(
ã

23/2ξ

)]−1

. (A.9)

Equations (A.8, A.9) agree with (4.12, 4.14) of [13] for
d = 2. For ξ � ã we obtain from (A.5–A.7)

ã

ξ1(θ)
=
ã

ξ

[
1− 1

48
(
1 + cos2 2θ

)( ã
ξ

)2

+O
(
ã4/ξ4

)]
.

(A.10)

For θ = 0 and θ = π/4, (A.10) disagrees with (4.13)
and (4.15) of reference [13]. Asymptotically (ξ → ∞) we
obtain from (A.10) ξ1/ξ → 1 for all θ (in the spherical limit
and in one-loop order). Nevertheless, because of the ex-
ponential form of G(x), the nonasymptotic θ-dependence
remains non-negligible in G(x) for |x| & 24ξ3/ã2 even
arbitrarily close to Tc, see the reasoning in the context
of (2.22) and (2.23).

To derive the large-|x| behavior (2.16) for the case
x = (x, 0, ...) we use (A.2) and (A.3). Expanding around
the maximum of the exponential part of the integrand of
C(x), (2.15), and performing the integration over s leads
to (2.16).

Appendix B: Bulk correlation function
in one-loop order for d < 4

In terms of the second-moment correlation length (1.2)
the bare bulk two-point vertex function at finite k above
Tc is given in one-loop order for d > 2 by [10]

Γ (2)(k, ξ, u0, ã, d) = Ĵk + J0ξ
−2 +O(u2

0), (B.1)
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corresponding to the integrand of G(x) in the form
of (2.11) and (2.10). Employing the renormalization proce-
dure at finite lattice constant ã as described in Section 2.2
of reference [10] we obtain for d ≤ 4

Γ (2)(k) = Z−1
ϕ

[
Ĵk + J0ξ

−2 +O
(
u(`)2

)]
× exp

`∫
1

ζϕ(`′)
d`′

`′
·

(B.2)

For the application to T > Tc we choose the flow param-
eter as ` = ξ0/ξ where ξ0 is the asymptotic amplitude
of ξ above Tc. For the case x = (x, 0, 0...) and in the
limit |x| � ã the correlation function is in one-loop order
for d ≤ 4

G(x) =
∫
k

[
Γ (2)(k)

]−1

eikx

= ZϕC(x, ξ1, ã) exp

1∫
`

ζϕ(`′)
d`′

`′
(B.3)

with C(x, ξ1, ã) given by (2.16–2.18), apart from correc-
tions of O

(
u(`)2

)
, where u(`) is the effective four-point

coupling [10]. In the asymptotic region ξ1 � ã we obtain
from (B.3)

G(x) = Zϕ
[
A(2)

]−1

ξ−ηξη0C(x, ξ1, ã)
[
1 +O

(
u∗2
)]
(B.4)

with

A(2) = exp
{∫ 0

1

[ζϕ(`′)− ζϕ(0)]
d`′

`′

}
(B.5)

and the critical exponent η = −ζϕ(0). In (B.4) the asymp-
totic (|x| � ξ1) form of C (x, ξ1, ã) is

C (x, ξ1, ã) =
ã2−d

4J

(
ã

2π|x|

)(d−1)/2(
ã

ξ1

)(d−3)/2

e−|x|/ξ1.

(B.6)

Asymptotically we may replace ξη in (B.4) by

ξη1
[
1 +O

(
ξ−2
)]
.

Therefore G(x) can be rewritten in the asymptotic scaling
form for d < 4

G(x) = (ã/|x|)d−2+η
Φ (|x|/ξ1) (B.7)

with the scaling function for |x|/ξ1 � 1

Φ (|x|/ξ1) = Ã
ã2−d

4J(2π)(d−1)/2

(
|x|
ξ1

) 1
2 (d−3)+η

× exp (−|x|/ξ1) , (B.8)

apart from O
(
u∗2
)

corrections. The amplitude Ã is for
d < 4 [10]

Ã = Zϕ (u, ã/ξ0, d) (ξ0/ã)η
[
A(2)

]−1

. (B.9)

Appendix C: Separation of the lowest mode

In the following we argue that the separation of the lowest
mode implies ∆χ ∝ L−d for L � ξ and for general d >
2 in any finite order of perturbation theory. In leading
order of the k 6= 0 modes the effective Hamiltonian (4.9)
becomes [22]

Heff(Φ) = Ld
[

1
2
reff
0 Φ2 + ueff

0 Φ
4

]
, (C.1)

reff
0 = r0 − r0c + 4(n+ 2)u0

×

L−d∑
k 6=0

(
r0 − r0c + Ĵk

)−1

−
∫
k

Ĵ−1
k

 ,
(C.2)

ueff
0 = u0 − 4(n+ 8)u2

0L
−d
∑
k 6=0

(
r0 − r0c + Ĵk

)−2

.

(C.3)

Since we work here at finite lattice spacing we have incor-
porated the finite shift r0c = −4(n+2)u0

∫
k

Ĵ−1
k +O(u2

0) of

the parameter r0 already at one-loop order. For simplicity
we have not included here the zero-mode average M2

0 de-
fined previously [21,22] since it is negligible in the region
T > Tc. It is convenient to rewrite reff

0 and ueff
0 in terms of

the second-moment bulk correlation length ξ. Using the
bare one-loop relation [10]

r0 − r0c = J0ξ
−2

{
1 + 4(n+ 2)u0

×
∫
k

[
Ĵk

(
Ĵk + J0ξ

−2
)]−1

+O
(
u2

0

)}
(C.4)

we obtain

reff
0 = J0ξ

−2 − 4(n+ 2)u0J
−1
0 ∆1

(
ξ−2
)
, (C.5)

ueff
0 = u0 − 4(n+ 8)u2

0J
−2
0

∫
k

(
ξ−2 + Ĵk/J0

)−2

+ 4(n+ 8)u2
0J
−2
0 ∆2

(
ξ−2
)
, (C.6)

∆m

(
ξ−2
)

=
∫
k

(
ξ−2 + Ĵk/J0

)−m
− L−d

∑
k 6=0

(
ξ−2 + Ĵk/J0

)−m
. (C.7)

Note that, because of the separation of the zero-mode, the
sums in (C.6) and (C.7) do not contain the k = 0 part
that was still contained in the function D̃, (4.2). Therefore
we obtain the relation ∆1

(
ξ−2
)

= L−dξ2−D̃(ξ, L, ã). The
important consequence is that the power-law term ∝ L−d
in ∆1(ξ−2) becomes dominant for large L/ξ compared to
the exponential behavior ∝ e−L/ξ1 of D̃ according to (4.3)
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and (3.12). Similarly we have the non-exponential behav-
ior ∆2 ∝ L−d for large L/ξ.

In the present approximation the susceptibility is

χ =
1
n

(
Ld

ueff
0

)1/2

ϑ2

(
Y eff

)
, (C.8)

Y eff = Ld/2reff
0

(
ueff

0

)−1/2
, (C.9)

ϑ2(y) =

∞∫
0

ds sn+1 exp(−1
2
ys2 − s4)

∞∫
0

ds sn−1 exp(−1
2
ys2 − s4)

· (C.10)

These expressions are valid for general d > 2 in the sense of
bare perturbation theory. If we take the limit ã → 0 and
apply the field-theoretic RG approach to (C.8–C.10) we
reproduce the results of reference [21] for 2 < d < 4 which
are well applicable to the critical region 0 ≤ L/ξ . O(1).
In this region lattice effects are negligible.

In the region L/ξ � 1 corresponding to Y eff � 1 the
function ϑ2 has the asymptotic expansion [49]

ϑ2(y) = ny−1
[
1− 4(n+ 2)y−2 +O

(
y−4
)]
. (C.11)

Within the lowest-mode approximation, where reff
0 =

J0ξ
−2 and ueff

0 = u0, the expansion (C.11) implies

χ = J−1
0 ξ2

[
1− 4(n+ 2)u0J

−2
0 ξ4/Ld +O

(
L−2d

)]
,

(C.12)

∆χ = 4(n+ 2)u0J
−2
0 ξ4L−d +O

(
L−2d

)
. (C.13)

We see that the lowest-mode approximation yields the in-
correct (non-exponential) size dependence ∝ L−d for large
L. In order to see whether this defect is remedied in higher
order we proceed by including the next terms of (C.5)
and (C.6). Then it turns out that the O(u0) contribution
∝ ∆1 ∝ L−d in (C.5) cancels the O(u0) term in (C.12)
and (C.13). Therefore ∆χ appears to become proportional
to u2

0 according to

∆χ = −cu2
0J
−4
0 ξ8−dL−d +O

(
L−2d

)
, (C.14)

c = 8(n+ 2)(n+ 8)Ad(d− 2)(4− d)−1, (C.15)

Ad = Γ (3− d/2)22−dπ−d/2(d− 2)−1, (C.16)

for 2 < d < 4. But in this order the leading size depen-
dence ∆χ ∝ L−d in (C.14) is still non-exponential. We
anticipate that in the next order of this approach the u2

0

term of (C.14) will also be cancelled, thus ∆χ ∝ u3
0L
−d,

etc. We conclude that the present approach does not cap-
ture the correct (exponential) size dependence of ∆χ for
L � ξ in any finite order of perturbation theory. An ap-
plication of the renormalization group for d < 4 would
not remedy this defect for L � ξ. In the present context
the renormalization of (C.14) would only change J−2

0 u0

to u∗ξd−4 and this would only change the critical temper-
ature dependence of (C.14) to ∆χ = −cu∗2(L/ξ)−d for
d < 4 in the region L� ξ � ã.
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19. E. Brézin, J. Zinn-Justin, Nucl. Phys. B 257 [FS14], 867

(1985).
20. J. Rudnick, H. Guo, D. Jasnow, J. Stat. Phys. 41, 353

(1985).
21. A. Esser, V. Dohm, X.S. Chen, Physica A 222, 355 (1995)
22. X.S. Chen, V. Dohm, Int. J. Mod. Phys. C 9, 1073 (1998).
23. V. Privman, M.E. Fisher, J. Stat. Phys. 33, 385 (1983).
24. K. Binder, M. Nauenberg, V. Privman, A.P. Young, Phys.

Rev. B 31, 1498 (1985).
25. D. Stauffer (private communication).
26. X.S. Chen, V. Dohm, D. Stauffer, Eur. Phys. J. B (in

print).
27. X.S. Chen, V. Dohm, Eur. Phys. J. B 5, 529 (1998).
28. M. Abramowitz, I.A. Stegun, eds., Handbook of Mathemat-

ical Functions (Dover Publ., New York, 1972).
29. X.S. Chen, V. Dohm (in preparation).
30. P.M. Morse, H. Feshbach, Methods of Theoretical Physics

(Mc Graw-Hill, New York, 1953)
31. M.N. Barber, M.E. Fisher, Ann. Phys. (N.Y.) 77, 1 (1973).
32. We find agreement with (8.7–8.9) of reference [31] pro-

vided that [Φ0(1 + Φ0)](d−3)/4 in (8.9) is replaced by the

more complete expression [sinh Γd(T )](d−3)/2 according to
(B.18) and (B.11) of reference [31], with Γd(T ) = 2wc =

2ar sinh(Φ
1/2
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